A Multi-Genre SMT System for Arabic to French
نویسندگان
چکیده
This work presents improvements of a large-scale Arabic to French statistical machine translation system over a period of three years. The development includes better preprocessing, more training data, additional genre-specific tuning for different domains, namely newswire text and broadcast news transcripts, and improved domain-dependent language models. Starting with an early prototype in 2005 that participated in the second CESTA evaluation, the system was further upgraded to achieve favorable BLEU scores of 44.8% for the text and 41.1% for the audio setting. These results are compared to a system based on the freely available Moses toolkit. We show significant gains both in terms of translation quality (up to +1.2% BLEU absolute) and translation speed (up to 16 times faster) for comparable configuration settings.
منابع مشابه
Multi-Lingual Phrase-Based Statistical Machine Translation for Arabic-English
In this paper, we implement a multilingual Statistical Machine Translation (SMT) system for Arabic-English Translation. Arabic Text can be categorized into standard and dialectal Arabic. These two forms of Arabic differ significantly. Different mono-lingual and multi-lingual hybrid SMT approaches are compared. Mono-lingual systems do always result in better translation accuracy in one Arabic fo...
متن کاملThe RWTH Aachen machine translation system for IWSLT 2011
In this paper the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2011 is presented. We participated in the MT (English-French, Arabic-English, ChineseEnglish) and SLT (English-French) tracks. Both hierarchical and phrase-based SMT decoders are applied. A number of ...
متن کاملThe RWTH Aachen Speech Recognition and Machine Translation System for IWSLT
In this paper, the automatic speech recognition (ASR) and statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2012 are presented. We participated in the ASR (English), MT (English-French, Arabic-English, ChineseEnglish, German-English) and SLT (English-French) tracks. F...
متن کاملThe RWTH Aachen speech recognition and machine translation system for IWSLT 2012
In this paper, the automatic speech recognition (ASR) and statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2012 are presented. We participated in the ASR (English), MT (English-French, Arabic-English, ChineseEnglish, German-English) and SLT (English-French) tracks. F...
متن کاملCreating a Large-Scale Arabic to French Statistical MachineTranslation System
In this work, the creation of a large-scale Arabic to French statistical machine translation system is presented. We introduce all necessary steps from corpus aquisition, preprocessing the data to training and optimizing the system and eventual evaluation. Since no corpora existed previously, we collected large amounts of data from the web. Arabic word segmentation was crucial to reduce the ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008